Влияние химических элементов на свойства сталей повышенной прочности феррито-перлитного класса

Влияние химических элементов на свойства сталей повышенной прочности феррито-перлитного класса

Влияние химических элементов на свойства низколегированных сталей


Влиянию элементов на свойства феррита (или железа) посвящено много работ, причем большой вклад внесли отечественные исследователи. Не рассматривая подробно эти работы, можно сделать следующее заключение: все легирующие элементы, изменяя параметр решетки железа, повышают его прочностные свойства, незначительно изменяют характеристики пластичности (за исключением элементов, образующих растворы внедрения) и обычно понижают ударную вязкость (за исключением никеля).

Азот, растворенный в феррите, оказывает исключительно сильное отрицательное влияние на хладостойкость низколегированных сталей. Это связано с тем, что внедряясь в феррит, азот упрочняет сталь, т.е. сильно возрастает величина σ0 в выражении; хорошо известно, что сегрегации атомов азота (облака) блокируют движение дислокаций, увеличивая k; сегрегации азота располагаются по плоскости, снижая y, и способствуют разрушению сколом, реализующемуся в кристаллах с ОЦК-решеткой именно по плоскостям. Наконец, азот сегрегирует к границам зерен, также увеличивая к и снижая y. Поэтому одна из основных задач раскисления и легирования стали — ослабление отрицательного действия свободного азота и возможно полное удаление этого элемента из твердого раствора.

Марганец, кремний, хром, никель, медь являются наиболее распространенными элементами в низколегированных сталях. При содержании углерода до 0,2 % рассматриваемые элементы преимущественно находятся в твердом растворе (за исключением хрома, образующего частично карбид, и меди, которая при содержании равном или менее 0,7% вызывает дисперсионное твердение), обусловливая повышение прочностных характеристик. Из рассматриваемых элементов кремний и марганец наиболее сильно упрочняют сталь.

Присутствие марганца в количестве 1,1-1,5% в стали с 0,15% С сопровождается повышением предела текучести с 310 до 390 Н/мм2. Степень упрочнения от легирования кремнием практически такая же: 1 % Si повышает предел текучести на 79 Н/мм2. Раздельное легирование стали хромом, никелем и медью оказывает небольшое влияние на предел текучести: 2 % Ni повышают его с 280 до 340 Н/мм2, 1 % Cu — на 40 Н/мм2. Упрочняющее влияние хрома усиливается с повышением содержания углерода или при комплексном легировании. Явление дисперсионного твердения, связанное с изменением растворимости меди в феррите, вызывает повышение прочностных и снижение пластических и вязких свойств. Эффект дисперсионного твердения обычно возрастает с уменьшением содержания в стали углерода и несколько снижается в присутствии элементов, образующих растворы с медью (марганца, никеля, кремния). Легирование медьсодержащих сталей вторым элементом обязательно, так как медь в количестве равном или менее 0,3 % приводит к красноломкости; такое влияние меди нейтрализуется введением никеля в соотношении не более 1 : 2.

По-иному влияют легирующие элементы на ударную вязкость при минусовых температурах и на условные пороги хладноломкости. Имеющиеся в литературе несоответствия по этим характеристикам можно объяснить повышенной чувствительностью этих характеристик к многим факторам (условиям выплавки и способу раскисления стали, исходной структуре и прочности, методике испытания и др.).

Рассматриваемые легирующие элементы по-разному влияют на хладостойкость низколегированных сталей. Положительное влияние никеля на переходную температуру подтверждается следующими данными для стали с 0,09% С (числитель — без никеля, знаменатель 2,0% Ni): KCU (Дж/см2) при температуре +20° С составляет 171/163; при -45° С — 16/118 и при -74° С — 0,7/9,8. Положительная роль никеля обычно связывается с ослаблением под действием этого элемента блокировки дислокаций сегрегациями азота.

Большинство работ, проведенных в последние годы, показывают, что марганец до 1,5-2,0% (в зависимости от углерода) повышает сопротивление стали и железа хрупкому разрушению. Однако легирование стали большим количеством марганца сопровождается образованием промежуточных структур с соответствующим ухудшением хладостойкости стали.

Вредное влияние кремния на условные пороги хладноломкости начинает проявляться при содержании более 0,8% (особенно более 1,1 %). В меньших количествах кремний снижает ударную вязкость и мало влияет на порог хладноломкости.

Подробнее остановимся на физической природе воздействия марганца в низколегированных малоуглеродистых сталях.

Марганец эффективно упрочняет твердый раствор из-за значительных различий атомных диаметров. Также следует заметить, что легирование марганцем приводит к измельчению зерен феррита и участков перлита.

При пластическом деформировании марганец увеличивает склонность к образованию ячеистой структуры, что способствует увеличению вязкости разрушения и хладостойкости. Марганец снижает степень блокировки движения дислокаций сегрегациями азота и уменьшает склонность к охрупчиванию при деформационном старении, поскольку задерживает выделение нитридов, в целом этот элемент приводит к снижению k. Кроме того, марганец вызывает перераспределение карбидов от границ внутрь зерен, что ведет к увеличению y при разрушении.

Марганец повышает низкотемпературную пластичность железа и понижает температуру вязкохрупкого перехода, морфологию карбидной фазы, одновременно увеличивает максимальные значения ударной вязкости.

При разработке марок марганцовистых сталей следует обращать внимание на допустимое верхнее содержание этого элемента, поскольку при превышении определенного предела в структуре появляются продукты промежуточного распада, резко снижающие ударную вязкость проката. По мнению авторов, в низколегированных строительных сталях содержание марганца не должно превышать 1,6%. В последнее время в связи с дефицитностью этого элемента особое внимание уделяется разработке сталей повышенной прочности с содержанием марганца, не превышающим 1,0%.

Еще Э. Гудремон отмечал, что в марганцовистых строительных сталях, применяемых непосредственно после горячей прокатки или нормализации, наблюдается строчечная или полосчатая структура из-за известной склонности марганца к ликвации. Причинами образования полосчатой структуры Э. Гудремон считал наличие сегрегации марганца и фосфора, а также полосчатое распределение сульфидов марганца и оксидов. Массовые строительные стали являются марганцовистыми, поэтому полосчатость структуры в этих материалах воспринимается как данность. Вместе с тем она имеет определенное отрицательное влияние на вязкость стали: работа разрушения в вязком состоянии понижается на 20...30 Дж из-за стеснения развития пластических деформаций в феррите; снижаются механические свойства при нагружении поперек направления прокатки. Полосчатая структура может быть устранена гомогенизирующим диффузионным отжигом при 1200° С или легированием определенного типа, описанным ниже. К отрицательным свойствам марганца также можно отнести склонность к образованию дискообразных сульфидов марганца, в определенных условиях сильно снижающих энергоемкость разрушения проката.

Кремний как легирующий элемент в ряде случаев может оказывать и положительное влияние на ударную вязкость стали, в том числе и при низких температурах. Кремний затрудняет возникновение промежуточных структур в прокате. В низколегированных сталях с кремнием ослаблена феррито-перлитная полосчатость. Наконец, поскольку у этого элемента сродство к азоту и углероду ниже, чем у железа, при охлаждении стали он способствует формированию в аустените дисперсной нитридной фазы алюминия, вытесняя азот из твердого раствора, что способствует измельчению зерна в стали и очистке твердого раствора от азота. Эти свойства кремния обусловили создание новых низколегированных сталей, описанных ниже.

Молибден и бор. Раздельное легирование этими элементами мало сказывается на прочностных и вязких свойствах малоуглеродистой стали с 0,09% С, 0,42% Mn, 0,25% Si для нормализованных прутков.

Комплексное легирование молибденом (≥0,20 %) и бором (≥0,0016 %) сопровождается образованием бейнитной структуры. Горячекатаные стали с основой легирования 0,2 % Мо + 0,005 % В были созданы, но не нашли широкого применения из-за низкой вязкости.

По данным работы, молибден, как и хром, оказывает небольшое влияние на порог хладноломкости железа.

Ванадий, ниобий, титан. Влиянию микролегирования этими элементами на свойства строительных сталей посвящен ряд серьезных монографий. Здесь приведены некоторые данные авторов, иллюстрирующие суть вопроса. Растворение в феррите этих элементов вызывает интенсивное упрочнение последнего, однако это сопровождается резким падением его пластичности и вязкости. В то же время эти элементы, измельчая структуру благодаря дисперсионному твердению, обеспечивают получение у стали хорошего комплекса механических свойств.

Титан измельчает структуру (балл 10-11) и повышает механические свойства стали.

Карбидная или нитридная (карбонитридная) фаза рассматриваемых элементов при нагреве может остаться нерастворенной или перейти в аустенит. Растворение карбида ванадия завершается при 950° С, а нитрида — при 1100° С. Карбонитрид ниобия и карбид титана начинают переходить в аустенит при 900° С, а завершается этот процесс только при 1300° С. Нитрид титана практически не растворим в аустените при нагреве до 1350° С. С повышением температуры нагрева и переводом большего количества карбидной или нитридной фазы в твердый раствор происходит заметное увеличение прочности.

Измельчению структуры и дисперсионному твердению способствуют нитриды и карбонитриды рассматриваемых элементов, в первую очередь, нитриды ванадия. Указанные процессы оказывают противоположное влияние на хладостойкость низколегированных сталей: дисперсионное твердение ухудшает, а измельчение структуры улучшает это свойство, поэтому суммарный эффект будет зависеть от их соотношения.

В ниобийсодержащей стали нормализация с 950° С вызывает измельчение зерна, переходная температура составляет около —30° С. Нагрев до 1250° С приводит к росту и огрублению зерна, значительному дисперсионному твердению и повышению переходной температуры.

Установлено, что содержание ванадия и титана в строительных сталях следует ограничивать.

С увеличением количества нитридов алюминия в низколегированной стали измельчается зерно феррита, и это приводит к повышению предела текучести. Считается, что для получения хорошего сочетания прочностных и вязких свойств содержание нитрида алюминия должно быть 0,03-0,08 %, что обеспечивает получение зерна в пределах 0,007-0,01 мм.

Как было показано выше, размер зерна является наиболее важной характеристикой, улучшающей ударную вязкость и хладостойкость стали. Поэтому мелкозернистая сталь с нитридами алюминия обладает низким порогом хладноломкости.

(1 Голосовать)

Последние публикации